Ciclo PAS
PAS es el acrónimo de Problemática - Análisis - Solución, fases de un ciclo de evaluación de eventos para formulación de soluciones.
PAS es el acrónimo de Problemática - Análisis - Solución, fases de un ciclo de evaluación de eventos para formulación de soluciones. El ciclo PAS es un enfoque conceptual que puede utilizarse para adelantar investigaciones de evaluación, planeamiento y manejo de recursos y en general análisis de procesos en los cuales intervienen y concurren factores diversos no siempre explícitos. El ciclo PAS se deriva del proceso de investigación científica, definido por ejemplo por Nahikian, 1964, aplicado al entendimiento de fenómenos ecológicos en general Poole, 1974 y utilizado en la solución de problemas relacionados con la planificación, Dyner, 1993.
En la figura 2., modificada de Dyner, 1993 se presentan los pasos del ciclo. Estos se agrupan en cuatro subciclos para los propósitos de la mayoría de estudios de planeación y manejo:
- I. Acopio de información. Parte de la formulación de la problemática [A], el establecimiento de un diagrama de causalidad preliminar [B] que permite el planteamiento de hipótesis [C] y define la información requerida para su verificación [D].
- II. Diagnóstico. Los datos resultantes de la etapa [D] deben ser procesados [E] y analizados [F] para verificar las hipótesis [B] y ajustar el diagrama de causalidad [B].
- III. Formulación de políticas y estrategias (soluciones a la problemática). La identificación y evaluación de los cambios [A] generados bajo diferentes escenarios de desarrollo [G] es simulada por el diagrama causal [B]. El doble flujo G-B indica la característica iterativa del proceso para identificar, evaluar y eliminar soluciones.
- IV. Jerarquización y selección de soluciones óptimas (recomendaciones). Las alternativas de solución del conjunto derivado del subciclo anterior [G] deben ser compararadas [H] para perfilar las recomendaciones que permitan un manejo adecuado de la problemática inicialmente planteada [A].
El desarrollo de los subciclos I., II. y III. permite atender la exigencia de considerar el componente ambiental como un condicionate previo al desarrollo. El subciclo IV por su parte, permite un acercamiento a una planificación intersectorial e integral. A partir de este enfoque conceptual se definen las actividades requeridas para el estudio y las precedencias y secuencias que constituyen la programación. A continuación se define brevemente cada uno de los pasos del ciclo y se ilustra con ejemplos realistas aplicados a una problemática particular, la de la recuperación de la Ciénaga Grande de Santa Marta después de la reapertura de los caños Clarín, Torno y Almendro a la ciénaga Grande de Santa Marta.[1]
Pasos del ciclo
Problemática
Diagrama causal
Consideraciones básicas para la formulación del diagrama causal
Un diagrama causal es la representación gráfica de las relaciones múltiples de causa - efecto entre las diversas variables que intervienen en un proceso. En este caso se representan los actores y factores de la transformación ambiental de una región dada como un sistema abierto, es decir con fuentes y sumideros (variables independientes y derivadas, ambas exógenas al sistema causal analizado).
Las variables a considerar en el ejemplo (figura 2.) son económicas (empleo, crecimiento, tasas de inversión, demanas de bienes y servicios, actividad minera, industrial o constructiva, etc.), sociales (interés en conservación, en desarrollo alternativo, en uso no consuntivo de recursos, etc.) o ambientales (alteración o reposición de estructura y dinámica, exportación de contaminantes, consumo de recursos, etc.). Pero pueden ser de cualquier índole, e. g., políticas, culturales, etc. siempre y cuando se puedan distinguir de otras participantes en el proceso.
Las variables se definen ad hoc, es decir para el sistema en cuestión. Las variables iniciales independendientes son las fuentes exógenas (representadas por rectángulos grises con las esquinas redondeadas) y las dependientes finales son los sumideros, representados éstos por rectángulos rojos con esquinas redondeadas. Sin embargo, cambios en una variable cualquiera originan cambios (estímulos o retardos) en todas las variables encadenadas, de tal manera que la lectura de un diagrama causal puede comenzar por cualquier variable. Para la correcta lectura del diagrama causal de la figura 2. se debe considerar además las siguientes reglas:
- todas las celdas contienen variables (elementos simples o complejos que cambian en el tiempo o en el espacio).
- la lectura de dos celdas comunicadas con una flecha verde es así: "incrementos en la variable A (celda de donde parte la flecha verde) se traducen en incrementos en la variable B (celda que recibe la flecha verde)". Esto significa que el incremento en una variable al inicio de una cadena de causalidad se traduce en incrementos en todas las variables conectadas mediante flechas verdes con esa variable.
- la lectura de dos celdas comunicadas con una flecha roja es similar pero el efecto es inverso, así: "incrementos en la variable A (celda de donde parte la flecha roja) se traducen en reducciones en la variable B (celda que recibe la flecha roja)". Esto significa que el incremento en una variable al inicio de una cadena de causalidad se traduce en reducciones en todas las variables de las celdas siguientes a la cual se conecta con una flecha roja y en similares reducciones en las celdas subsiguientes si están conectadas con flechas verdes y en aumentos si están conectadas con flechas rojas. Es decir el efecto de una flecha roja es el de cambiar el sentido (+ ó -) de la relación.
- las variables pueden ser positivas v. gr.:
- crecimiento de áreas urbanizadas
- incremento de demanda de materiales de construcción
- desarrollo de tipologías urbanas X
- aumento de los niveles de contaminantes en el aire, etc.
o puden ser negativas, v. gr.:
- reducción del espacio público
- disminución del tamaño de las viviendas
- eliminación de áreas para intercambio social
- deterioro de la capacidad de ahorro etc. - muchas veces es necesario replantear un diagrama invirtiendo las variables para que no se presenten aparentes contrasentidos ilógicos al leer el diagrama completo. Cuando esto se hace, es necesario también cambiar el color de las flechas. Es decir una variable se puede reemplazar por su complemento, v. gr.:
- crecimiento de áreas urbanizadas vs. reducción de áreas rurales
- disminución del tamaño de las viviendas vs. aumento de la densidad de habitantes por vivienda - En ocasiones se pueden enlazar con una flecha (del color apropiado) dos variables complementarias para hacer más explícita la relación entre dos variables, por ejemplo en la relación:
- se podría cuestionar la aseveración implícita; ésta se haría más clara, más intuitiva, si se representa así:
- Se puede cambiar la estructura (colores de las flechas) y las relaciones implícitas siguen siendo las mismas:
Las anteriores reglas y consideraciones se harán más claras al leer y verbalizar las relaciones implícitas, lo cual se efectuará a continuación.
Formulación de hipótesis
Acopio de datos para verificación de hipótesis
Verificación de diagrama causal (definición de relaciones causa - efecto)
Identificación de soluciones y verificación en diagrama causal
Jeraquización multiobjetivo de soluciones
Aplicación de solución (-ones) a problemática
^ Los ejemplos se toman de dos asesorías brindadas por L. C. García Lozano a Prociénaga (proyecto de restauración de la Ciénaga Grande de Santa Marta) en 1996 y 1999.
Ejemplos
- Planicie aluvial del Magdalena
- EIA vía al mar Chocó 1996
- Ciénaga Grande de Santa Marta
- Chingaza
- EsS Lima
- BAC-Yacyretá
- Vivienda y hábitat en AMVA
- Minería provincia de BsAs