Diferencia entre revisiones de «Índice de Czekanowski»

De Neotrópicos, plataforma colaborativa.
Ir a la navegación Ir a la búsqueda
Sin resumen de edición
 
Sin resumen de edición
Línea 6: Línea 6:
d = spp ausentes en común
d = spp ausentes en común


[http://people.revoledu.com/kardi/tutorial/Similarity/SimpleMatching.html Tutorial sobre medición de similitud]


[http://media.wiley.com/product_data/excerpt/61/04714696/0471469661.pdf Tutorial incompleto, buscar referencia. Explicación simple sobre índices de similitud y distancia]
<!--
With binary variables, we traditionally focus on the notion of similarity rather
than distance (or dissimilarity). Consider two binary vectors x and y that consist
of two strings [xk], [yk] of binary data; compare them coordinatewise and do the
simple counting of occurrences:
number of occurrences when xk and yk are both equal to 1
number of occurrences when xk = 0 and yk = 1
number of occurrences when xk = 1 and yk = 0
number of occurrences when xk and yk are both equal to 0
These four numbers can be organized in a 2 by 2 co-occurrence matrix (contingency
table) that visualizes how “close” these two strings are to each other.
::1 0
::1 a b
::0 c d
Evidently the zero nondiagonal entries of this matrix point at the ideal matching
(the highest similarity). Based on these four entries, there are several commonly
encountered measure of similarity of binary vectors x and y. The simplest matching coefficient computes as the following ratio:
a + d
a + b + c + d
(1.4)
The Russell and Rao measure of similarity consists of the quotient
a
a + b + c + d
(1.5)
The Jacard index involves the case when both inputs assume values equal to 1:
a
a + b + c
(1.6)
The Czekanowski index is practically the same as the Jacard index, but by adding
the weight factor of 2, it emphasizes the coincidence of situations where entries
of x and y both assume values equal to 1:
2a
2a + b + c
(1.7)
-->
[[Categoría:Glosario]] [[Categoría:Esbozo]]
[[Categoría:Glosario]] [[Categoría:Esbozo]]

Revisión del 20:35 1 oct 2006

Cz =

a = ssp comunes b = exclusivas de grupo 1 c = exclusivas de grupo 2 d = spp ausentes en común

Tutorial sobre medición de similitud

Tutorial incompleto, buscar referencia. Explicación simple sobre índices de similitud y distancia