Diferencia entre revisiones de «Coeficiente de concordancia simple»
Sin resumen de edición |
cuadro de índices comunes |
||
(No se muestra una edición intermedia del mismo usuario) | |||
Línea 1: | Línea 1: | ||
{| class="wikitable" | |||
! índice !! símbolo !! fórmula | |||
|- | |||
| || || | |||
|- | |||
| SMC (concordancia simple) || ''S'' || (''a'' + ''d'')/(''a'' + ''b'' + ''c'' + ''d'') | |||
|- | |||
| Jaccard || ''J'' || ''a''/(''a'' + ''b'' + ''c'') | |||
|- | |||
| Czekanovski || ''C'' || 2''a''/(2''a'' + ''b'' + ''c'') | |||
|- | |||
| Russell & Rao || ''R'' || ''a''/(''a'' + ''b'' + ''c'' + ''d'') | |||
|- | |||
| distancia euclidiana (disimilaridad) || ''∂'' || [∑(x''A''<sub>i</sub> - x''B''<sub>i</sub>)<sup>2</sup>]<sup>½</sup> | |||
|} | |||
a<sub>s</sub> = | a<sub>s</sub> = | ||
a = ssp comunes | :''a'' = ssp comunes | ||
b = exclusivas de grupo 1 | :''b'' = exclusivas de grupo 1 | ||
c = exclusivas de grupo 2 | :''c'' = exclusivas de grupo 2 | ||
d = spp ausentes en común | :''d'' = spp ausentes en común | ||
[[Categoría:Glosario]] [[Categoría:Esbozo]] | [[Categoría:Glosario]] [[Categoría:Esbozo]] | ||
The simple matching coefficient (SMC) or Rand similarity coefficient is a statistic used for comparing the similarity and diversity of sample sets.[1] | |||
A | |||
0 1 | |||
B 0 {\displaystyle M_{00}}M_{00} {\displaystyle M_{10}}M_{10} | |||
1 {\displaystyle M_{01}}M_{01} {\displaystyle M_{11}}M_{11} | |||
Given two objects, A and B, each with n binary attributes, SMC is defined as: | |||
{\displaystyle {\begin{aligned}{\text{SMC}}&={\frac {\text{number of matching attributes}}{\text{number of attributes}}}\\[8pt]&={\frac {M_{00}+M_{11}}{M_{00}+M_{01}+M_{10}+M_{11}}}\end{aligned}}}{\displaystyle {\begin{aligned}{\text{SMC}}&={\frac {\text{number of matching attributes}}{\text{number of attributes}}}\\[8pt]&={\frac {M_{00}+M_{11}}{M_{00}+M_{01}+M_{10}+M_{11}}}\end{aligned}}} | |||
where: | |||
{\displaystyle M_{11}}M_{11} is the total number of attributes where A and B both have a value of 1. | |||
{\displaystyle M_{01}}M_{01} is the total number of attributes where the attribute of A is 0 and the attribute of B is 1. | |||
{\displaystyle M_{10}}M_{10} is the total number of attributes where the attribute of A is 1 and the attribute of B is 0. | |||
{\displaystyle M_{00}}M_{00} is the total number of attributes where A and B both have a value of 0. | |||
The simple matching distance (SMD), which measures dissimilarity between sample sets, is given by {\displaystyle 1-{\text{SMC}}}{\displaystyle 1-{\text{SMC}}}.[2] | |||
SMC is linearly related to Hamann similarity: {\displaystyle SMC=(Hamann+1)/2}{\displaystyle SMC=(Hamann+1)/2}. Also, {\displaystyle SMC=1-D^{2}/n}{\displaystyle SMC=1-D^{2}/n}, where {\displaystyle D^{2}}D^{2} is the squared Euclidean distance between the two objects (binary vectors) and n is the number of attributes. |
Revisión actual - 18:14 2 nov 2019
índice | símbolo | fórmula |
---|---|---|
SMC (concordancia simple) | S | (a + d)/(a + b + c + d) |
Jaccard | J | a/(a + b + c) |
Czekanovski | C | 2a/(2a + b + c) |
Russell & Rao | R | a/(a + b + c + d) |
distancia euclidiana (disimilaridad) | ∂ | [∑(xAi - xBi)2]½ |
as =
- a = ssp comunes
- b = exclusivas de grupo 1
- c = exclusivas de grupo 2
- d = spp ausentes en común
The simple matching coefficient (SMC) or Rand similarity coefficient is a statistic used for comparing the similarity and diversity of sample sets.[1]
A 0 1 B 0 {\displaystyle M_{00}}M_{00} {\displaystyle M_{10}}M_{10} 1 {\displaystyle M_{01}}M_{01} {\displaystyle M_{11}}M_{11} Given two objects, A and B, each with n binary attributes, SMC is defined as:
{\displaystyle {\begin{aligned}{\text{SMC}}&={\frac {\text{number of matching attributes}}{\text{number of attributes}}}\\[8pt]&={\frac {M_{00}+M_{11}}{M_{00}+M_{01}+M_{10}+M_{11}}}\end{aligned}}}{\displaystyle {\begin{aligned}{\text{SMC}}&={\frac {\text{number of matching attributes}}{\text{number of attributes}}}\\[8pt]&={\frac {M_{00}+M_{11}}{M_{00}+M_{01}+M_{10}+M_{11}}}\end{aligned}}} where:
{\displaystyle M_{11}}M_{11} is the total number of attributes where A and B both have a value of 1. {\displaystyle M_{01}}M_{01} is the total number of attributes where the attribute of A is 0 and the attribute of B is 1. {\displaystyle M_{10}}M_{10} is the total number of attributes where the attribute of A is 1 and the attribute of B is 0. {\displaystyle M_{00}}M_{00} is the total number of attributes where A and B both have a value of 0. The simple matching distance (SMD), which measures dissimilarity between sample sets, is given by {\displaystyle 1-{\text{SMC}}}{\displaystyle 1-{\text{SMC}}}.[2]
SMC is linearly related to Hamann similarity: {\displaystyle SMC=(Hamann+1)/2}{\displaystyle SMC=(Hamann+1)/2}. Also, {\displaystyle SMC=1-D^{2}/n}{\displaystyle SMC=1-D^{2}/n}, where {\displaystyle D^{2}}D^{2} is the squared Euclidean distance between the two objects (binary vectors) and n is the number of attributes.